
KEP: 2 Title: Modification of datetime type, introduction of 'tz' sub-tag Version: $Revision$ Last-Modified:
$Date$ Author: Georg Greve <greve@kolabsys.com> Status: Draft Type: Design Content-Type: text/x-rst
Created: 2010-11-16

Abstract
Kolab used to store all times in UTC and did not allow for time zone information. For recurring events in
parts of the world with Daylight Saving Time (DST) regimes this means the time of the event is changing,
as DST is defined in a dynamic offset towards UTC.

In order to achieve a recurring event that retains its local time across DST transitions, a client must know
which time zone to use. The implicit assumption of older clients to always use local time zone is
problematic, as explained in "Description of current client behaviour" below. So enabling time zone
information for datetime fields is essential.

Some reference for background was provided on the Kolab format list [1] and there have been various
proposals for resolution of the issue, including adding time zone information in a separate XML tag, along
with DST details. [2] This document is based upon those discussions and draws inspiration from the
various proposals, resulting in the described update which follows the approach of least invasive change
with least burden on client implementors.

Update to the XML Format
All objects hold datetime in the form of creation and modification times. Consistent time handling across
all object types and occurences of time objects is highly desirable. The following change therefore affects
all Kolab object types.

Change of type: datetime
The type for datetime storage in Kolab XML is modified as follows:

• All datetime storage fields MUST be stored in the format described by RFC3339: Date and Time on
the Internet: Timestamps [3].

• All such timestamps MUST be calculated in standard time, NOT in Daylight Saving Time (DST).

• All datetime storage fields MAY carry up to one 'tz' hierarchically nested sub-tag describing the time
zone in the uniform naming convention designed by Paul Eggert, specifying time zones from the
Olson database, a.k.a. tz database, a.k.a. zoneinfo database [4].

Examples of valid 'start-date' fields using datetime structures according to the above specification are

• <start-date>2010-01-31T11:27:21Z</start-date>

• <start-date>2010-01-31T11:27:21+00:00</start-date>

• <start-date>1996-12-19T16:39:57-08:00</start-date>

• <start-date>1996-12-19T16:39:57-08:00<tz>America/Sao_Paulo</tz></start-date>

Note: The first two examples are identical to the datetime type used in Kolab XML storage prior to this
modification.

When time zone information is provided, a client MUST consider the event local to this time zone.
Recurrence MUST then be calculated to keep the event at the same local time within that time zone,
adjusting the time for the event accordingly for the client's local time zone.

When no time zone information is provided, a client MUST calculate recurrences strictly according to
UTC.

When modifying objects, clients MUST preserve the original time zone used for storage.

mailto:greve@kolabsys.com

When adding new objects, clients SHOULD default to the local time zone of the user, but SHOULD allow
the user to select the time zone for storage and consequently recurrence calculation.

Upgrade Path
All clients already must preserve all tags they do not understand. So the newly introduced 'tz' tag must be
preserved by older clients that do not understand it.

There will be some change of client behaviour as older events now displayed in newer clients now
correctly start changing their local time when entering/leaving DST. This is preferable to current client
behaviour as it will ensure all users get the same time for an event and are no longer going to miss each
other.

Unavoidably, older clients will continue to display recurrence times incorrectly. This is neither an
improvement nor a deterioration of the current situation.

Smart Upgrade Option
Clients MAY choose to use the 'product-id' and absence of 'tz' tag to identify which event was created by
an older client, and silently update it to have recurrence behave in the way the user expects. When doing
so, it is recommended to assume the client's local time zone was the one for which the recurrence should
be stable in local time, as that was what clients were assuming and showing to the user thus far.

As this provides a substantial amount of work for clients, this is NOT a requirement.

Background notes on backwards-compatibility
This modification represents the least invasive change to redress the existing issues.

While it is preferable to have correct recurrence calculation, it would be even better if this change could
take place without notice by the user. This would only become possible if clients had the chance to
differentiate between objects according to the format prior to this update, and those afterwards. This
would require either an additional field, which older clients could ignore, but newer clients MUST use to
allow for differentiation, -- OR -- a change in object version number.

Because there are multiple datetime fields possible in any object, and additional use of such structures is
conceivable in the future, such an additional field had to be introduced in a nested structure. Making its
usage mandatory to gain certainty of whether an object was written by a new client seemed to add cruft
without much benefit. A version change on the other hand would break older clients entirely, likely
resulting in error messages or "disappearing" events for the user.

Both approaches would logically favour a "fix broken objects when you see them" policy, which is much
more demanding and burdensome for client implementors, and more error prone than the "lazy update"
path described above, which relies on the user to identify unwanted behaviour and then make a decision
about how to "fix" the event.

Description of current client behaviour
Existing clients currently make the implicit assumption that the time was specified in and should be
calculated against the local time zone of the client itself. This will lead to issues when a user is changing
time zones, or when participants in multiple time zones are concerned. This behaviour could be confirmed
with both Kontact and the Kolab Web Client Horde.

A weekly meeting is set for 11:00 every Wednesday in Zurich, Switzerland, starting on 23 June 2010. This
gets translated stored in Kolab XML as 2010-06-23T09:00:00Z. On Wednesday 17 November 2010
Switzerland has switched out of DST, the local timezone is therefore UTC+1. If correctly interpreting the
stored information, the meeting should now start at 10:00. At 09:50 the KDE Reminder Daemon correctly
informs the user that the conference call is about to start in 10 minutes.

KDE Kontact however incorrectly displays the meeting as scheduled for 11:00. The same is true for the
Kolab web client based on Horde for all versions of Kolab <= 2.2.4. This however is equivalent to 10:00
UTC. When adding another user in Sao Paulo, Brazil to the equation, the event is shown as taking place
at 06:00 local time, or 08:00 UTC, due to the Brazilian summer time with an offset of UTC-3 that went into
the assumption for the calculation of the recurrence. The result is that two users, while being presented
with a data set that looks consistent, will miss each other by two hours.

Which other clients exhibit the same behaviour is unclear, but it seems there is no reasonable assumption
that current behaviour correctly models any rational use case.

References

Copyright
This document has been placed in the public domain.

1 Timezone / recurrence scheduling discussion for Kolab, Greve
(http://kolab.org/pipermail/kolab-format/2010-October/001004.html)

2 Recurring events with timezone, Helwich
(http://kolab.org/pipermail/kolab-format/2010-October/000999.html)

3 RFC3339: Date and Time on the Internet: Timestamps, Klyne, Newman
(http://www.ietf.org/rfc/rfc3339.txt)

4 Wikipedia: Zoneinfo (https://secure.wikimedia.org/wikipedia/en/wiki/Zoneinfo)

http://kolab.org/pipermail/kolab-format/2010-October/001004.html
http://kolab.org/pipermail/kolab-format/2010-October/000999.html
http://www.ietf.org/rfc/rfc3339.txt
https://secure.wikimedia.org/wikipedia/en/wiki/Zoneinfo

	Abstract
	Update to the XML Format
	Change of type: datetime

	Upgrade Path
	Smart Upgrade Option
	Background notes on backwards-compatibility

	Description of current client behaviour
	References
	Copyright

