KEP: 1 Title: Bootstrapping the KEP process Version: $Revision$ Last-Modified: $Date$ Author: Georg
Greve <greve@kolabsys.com> Status: Draft Type: Process Content-Type: text/x-rst Created: 2010-11-16

Abstract

KEP stands for Kolab Enhancement Proposal. A KEP is modeled closely after the Python Enhancement
Proposal (PEP) [1] process. A Kolab Enhancement Proposal is a design document providing information
to the Kolab community, or describing a new feature for the Kolab Groupware Solution or its processes or
environment. The KEP should provide a concise technical specification of the feature and a rationale for
the feature.

Some of the most important benefits of the KEPs are to (a) require ideas to be fully thought out, (b)
communicate a change to those who did not particupate in the discussion, (c) document it for future
reference and use by new members of our community. We intend KEPs to be the preferred mechanisms
for documenting the design decisions that have gone into Kolab after its re-launch in 2010 as well as
proposing new features, for collecting community input on an issue. The KEP author is responsible for
building consensus within the community and documenting dissenting opinions.

Because the KEPs are maintained as text files in a versioned repository, their revision history is the
historical record of the feature proposal. [2]

KEP Types

There are three kinds of KEP:

1. A Design KEP describes a change to the Kolab Storage Format or other central design questions. 1. A
Technology KEP describes a change to the integrated technologies. 2. An Informational KEP describes
a Kolab design issue, or provides general guidelines or information to the Kolab community, but does not
propose a new feature. Informational KEPs do not necessarily represent a Kolab community consensus or
recommendation, so users and implementors are free to ignore Informational KEPs or follow their advice.
3. A Process KEP describes a process surrounding Kolab, or proposes a change to (or an event in) a
process. Process KEPs are like Format KEPs but apply to areas other than the Kolab Groupware Solution
itself. They may propose an implementation, but not to Kolab's codebase; they often require community
consensus; unlike Informational KEPs, they are more than recommendations, and users are typically not
free to ignore them. Examples include procedures, guidelines, changes to the decision-making process,
and changes to the tools or environment used in Kolab development. Any meta-KEP is also considered a
Process KEP.

KEP Process

The KEP Process is modeled after the PEP process, including the forms of markup [3][4] and headers,
with Kolab Systems providing the moderator and reference point. The authoritative address to send KEPs
is kolab-format@kolab.org when changes to the format are being proposed and kolab-devel@kolab.org
for everything else.

We expect that we will need to evolve our processes away from the PEP process as we employ a different
development methodology and have a different community. But starting from the established PEP process
should at least provide us with a sane default.

References

Copyright

This document has been placed in the public domain.

mailto:greve@kolabsys.com
mailto:kolab-format@kolab.org
mailto:kolab-devel@kolab.org

PEP 1, PEP Purpose and Guidelines, Warsaw, Hylton
(http://www.python.org/dev/peps/pep-0001)

This historical record is available in the Kolab GIT repository provided by Kolab
Systems. For those without direct access to the repository, the information is
available via GIT web access here: (.thd.)

PEP 9, Sample Plaintext PEP Template, Warsaw
(http://www.python.org/dev/peps/pep-0009)

PEP 12, Sample reStructuredText PEP Template, Goodger, Warsaw
(http://www.python.org/dev/peps/pep-0012)

http://www.python.org/dev/peps/pep-0001
http://www.python.org/dev/peps/pep-0009
http://www.python.org/dev/peps/pep-0012

	Abstract
	KEP Types
	KEP Process
	References
	Copyright

